An Algebraic Multigrid Method for Quadratic Finite Element Equations of Elliptic and Saddle Point Systems in 3d

نویسندگان

  • H. Yang
  • HUIDONG YANG
چکیده

In this work, we propose a robust and easily implemented algebraic multigrid method as a stand-alone solver or a preconditioner in Krylov subspace methods for solving either symmetric and positive definite or saddle point linear systems of equations arising from the finite element discretization of the vector Laplacian problem, linear elasticity problem in pure displacement and mixed displacement-pressure form, and Stokes problem in mixed velocity-pressure form in 3D, respectively. We use hierarchical quadratic basis functions to construct the finite element spaces. A new heuristic algebraic coarsening strategy is introduced for construction of the hierarchical coarse system matrices. We focus on numerical study of the mesh-independence robustness of the algebraic multigrid and the algebraic multigrid preconditioned Krylov subspace methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Methods for Saddle Point Problems: Darcy Systems

We design and analyze multigrid methods for the saddle point problems resulting from Raviart-Thomas-Nédélec mixed finite element methods (of order at least 1) for the Darcy system in porous media flow. Uniform convergence of the W -cycle algorithm in a nonstandard energy norm is established. Extensions to general second order elliptic problems are also addressed.

متن کامل

A general framework for multigrid methods for mortar finite elements

In this paper, a general framework for the analysis of multigrid methods for mortar finite elements is considered. The numerical realization is based on the algebraic saddle point formulation arising from the discretization of second order elliptic equations on nonmatching grids. Suitable discrete Lagrange multipliers on the interface guarantee weak continuity and an optimal discretization sche...

متن کامل

A Comparison of Three Solvers for the Incompressible Navier-Stokes Equations

Three solvers for saddle point problems arising from the linearization and discretization of the steady state incompressible Navier–Stokes equations are numerically studied. The numerical tests are based on nonconforming finite element approximations of lowest order in two–dimensional domains using isotropic meshes. The investigated solvers are coupled multigrid methods with Vanka–type smoother...

متن کامل

4 A Multigrid Method for the Solution of Linear-Quadratic Optimal Control Problems

The main part of this chapter is devoted to the development and presentation of a coupled multigrid method for the solution of saddle point systems (2.51) arising from the discretization of PDE constrained optimization problems. In subsequent chapters, the devised method will be adapted to handle inequality constraints on the control, and it will be employed for the solution of the systems, whi...

متن کامل

Algebraic multigrid based on computational molecules, 2: Systems of elliptic partial differential equations

This paper deals with a new approach in algebraic multigrid (AMG) for self-adjoint and elliptic problems arising from finite-element (FE) discretization of systems of partial differential equations (PDEs). Generalizing our approach for scalar problems [15], we propose an edge matrix concept regarding systems of PDEs. This gives a simple and reliable method for the evaluation of the strength of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015